Cauchy problem for nonstrictly hyperbolic systems
نویسندگان
چکیده
منابع مشابه
On the Cauchy Problem for Nonlinear Hyperbolic Systems
This paper consider various examples of metrics which are contractive w.r.t. an evolution semigroup, and discusses the possibility of an abstract O.D.E. theory on metric spaces, with applications to hyperbolic systems. In particular, using a recently introduced deenition of Viscosity Solutions, it is shown how a strictly hyperbolic system of conservation laws can be reformulated as an abstract ...
متن کاملConvergence of approximate solutions of the Cauchy problem for a 2× 2 nonstrictly hyperbolic system of conservation laws
A convergence theorem for the vanishing viscosity method and for the Lax–Friedrichs schemes, applied to a nonstrictly hyperbolic and nongenuinely nonlinear system is established. Using the theory of compensated compactness we prove convergence of a subsequence in the strong topology. c © 1999 Elsevier Science B.V. All rights reserved.
متن کاملRIEMANN PROBLEMS FOR NONSTRICTLY HYPERBOLIC 2x2 SYSTEMS OF CONSERVATION LAWS
The Riemann problem is solved for 2 x 2 systems of hyperbolic conservation laws having quadratic flux functions. Equations with quadratic flux functions arise from neglecting higher order nonlinear terms in hyperbolic systems that fail to be strictly hyperbolic everywhere. Such equations divide into four classes, three of which are considered in this paper. The solution of the Riemann problem i...
متن کاملGlobal Solution of the Cauchy Problem for a Class of 2 x 2 Nonstrictly
We prove the existence of a global weak solution to the Cauchy problem for a class of 2 × 2 equations which model one-dimensional multiphase flow, and which represent a natural generalization of the scalar Buckley-Leverett equation. Loss of strict hyperbolicity (coinciding wave speeds with a (~ I) normal form) occurs on a curve in state space, and waves in a neighborhood of this curve contribut...
متن کاملPrecise Finite Speed and Uniqueness in the Cauchy Problem for Symmetrizable Hyperbolic Systems
Precise finite speed, in the sense of that the domain of influence is a subset of the union of influence curves through the support of the initial data is proved for hyperbolic systems symmetrized by pseudodifferential operators in the spatial variables. From this, uniqueness in the Cauchy problem at spacelike hypersurfaces is derived by a Hölmgren style duality argument. Sharp finite speed is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences
سال: 1979
ISSN: 0034-5318
DOI: 10.2977/prims/1195188183